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LETTER TO THE EDITOR 

A new analytical approach to the determination of the 
hard-sphere gas free energy 

P Clippe and R Evrard 
lnstitut de Physique, Universite de LiBge, B-4000 Sart TilmanlLiege I ,  Belgium 

Received 7 March 1974 

Abstract. A recurrence method is developed to derive a partial differential equation for the 
logarithm of the configurational integral of a hard-sphere gas. The free energy follows 
immediately, while comparison of analytical results to experimental data (on virtual hard- 
sphere gases like argon and xenon) gives quite remarkable precision. 

The excess free energy A of a gas of N molecules in a volume V and at a temperature T 
is related to the configuration integral Q by the well known relation 

- A/kT = In Q ( N ,  V )  (1) 

where Q ( N ,  V )  is defined by 

Q ( N ,  V )  = J . . . J d r l  . . .  dr,exp(-pu). 

In the case of the hard-sphere gas, u is a sum of hard-sphere pair potentials 

u(r) = 1 u(rij) .  
i.j 

(3) 

Here rij is the distance between the centres of the spheres i and j ,  and u(rij) is defined by 

(4) 

where ro is twice the hard-sphere radius. Therefore, the factor exp( - pu), ie the hard- 
sphere distribution function, appears as the product of cut-off functions 

if r i j  < ro K if rij > ro 
u(rjj) = 

exp( -/?U) = n O(rij). 
i .3  

By definition 

if r < ro 

ifr  > r o .  
O(r) = 

Although the hard-sphere gas is a fundamental problem in statistical mechanics, 
the solutions proposed up to now do not seem entirely satisfactory (Rice and Gray 
1965). Historically, the problem has been primarily tackled by means of the integral 
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equations method, the results of which are still unsatisfactory at low temperature and 
high density (Levesque 1966). Other mathematical approaches, like molecular dynamics 
and Monte Carlo methods (Rosenbluth and Rosenbluth 1954, Alder and Wainwright 
1957) although leading to ‘exact’ results do not however bring much insight into the 
physical problem. 

Here we propose a new approach (Clippe 1973) which leads to an approximate but, 
we hope, illuminating solution, besides being a source of possible generalizations. 
This approach is essentially based upon a partial differential equation obtained by the 
following recurrence procedure. 

I t  is clear that adding an extra molecule to the gas while keeping the initial volume 
V unchanged imposes a spatial restriction on the volume available to the first N mole- 
cules. It is then possible to calculate the new configuration integral Q ( N +  1, V )  in the 
following way. Let us first suppose that the extra molecule is at a fixed position Y. 

Then, the result of the integration over the N first molecules is the configuration integral 
for a gas of N molecules, but in a volume now reduced to V -  V,, where the quantity 

I / - 4 -  3 
0 - 3 x 7 0  

is called the exclusion volume of a hard sphere, ie eight times its volume. Obviously, 
Vo is much smaller than V. 

In a second step, one must integrate over the position of the extra molecule, which 
leads to a factor V, so that 

(7) 
In fact this result is approximate. since excluding a volume V, with spherical shape 
and dimensions comparable to the molecular radius is not exactly equivalent to decreas- 
ing the volume of the gas by an uniform contraction. Indeed the possible configurations 
of the system are different in these two cases and the integration over these configurations 
can therefore give slightly different results. 

Let us now suppose that dN molecules are added. One immediately obtains by 
recurrence 

(8) 
if the dN added molecules are sufficiently far from each other in such a way that their 
exclusion volumes do not overlap. On the other hand, the expression 

Q ( N +  1, V )  = V Q ( N ,  V -  Vo). 

Q(N + dN, V )  = V d N Q ( N ,  V -  dN V,) 

V(V-  V,). . . [V-(dN- l)V,] 

appearing in (8) has been approximated by VdN, which is quite reasonable since Vo is 
negligible compared to  V. 

After taking the logarithm of (8) and expanding in powers of dN, the linear terms 
lead to a partial differential equation, which is the corner stone of the new method : 

d a 
l/ln V - f ( N ,  V ) +  V,/ln V - f ( N ,  V ) -  1 = 0 

8 N  av 
where 

f (N,  V )  = In 8(N,  V ) .  

The equation (9) can be solved easily (Favard 1960). One obtains 

f(N, V )  = VjV, In V -  VIVO + I& V -  NVo) 

(9) 
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where +(V-NV0) is an arbitrary function to be determined from given ‘boundary’ 
condition. We impose that our solution be identical to the Van der Waals approxi- 
mation in the limit of small densities ( N V ,  << V). In the Van der Waals approximation 

(1 1 )  - A/kT = N In( V -  i N  V,). 

Hence In Q ( N ,  V )  must tend to zero as NV0/2V tends to zero. Therefore 

V-NVo V-NVo  
V VO 

l+h(V-NVo) = _ _ _ - ~  In( V -  N Vo) 

substituting ( 1  2) and (10) into the definition of A leads to 

- A / k T =  NIn V + N ( l - V / N V o ) l n ( l - N V o / V ) - N .  (13) 

This solution has no longer any meaning for densities high enough to have NVo/V 2 1 .  
An analytical extension of the solution (13) can be found in replacing ( 1  -NVo/V)  
by its modulus 11 - NVo/Vl. Though this procedure is analytically not fully justified, 
practically it has been found to be valid when analysing experimental data (Clippe 1973). 

The result (13) shows great similarity with that obtained for the free energy of a 
lattice gas (Coopersmith and Brout 1963). This is not surprising indeed, since a lattice 
gas of non-interacting molecules is subject to the restriction that at most one molecule 
can occupy a lattice site. Adding an extra molecule to the system reduces the volume 
available to the first N molecules by a quantity V,, exactly as in our theory. Hence 
the above result (12), approximate in the case of a system of hard spheres, becomes 
exact for the lattice gas. 

On the other hand, Zwanzig (1954) has expressed the free energy of a real gas as the 
sum of the free energy of a hard-sphere system plus perturbation terms. In such a manner, 
it is possible to evaluate this hard-sphere free energy from experimental data. The 
trick is to subtract any temperature dependent contribution from (1). We have applied 
this idea to argon (Clippe 1973). It appears that the hard-sphere gas contribution is 
indeed practically temperature independent. Detailed calculations will be published 
in a forthcoming publication. 

The results are found in excellent agreement with the prediction of (13). A similar 
procedure (Clippe 1973) has also been used for the Van der Waals approximation ( 1  1). 
Although it gives good results, its precision is less remarkable. In table 1 ,  the precision 
of the approximation proposed here is compared with that of the Van der Waals approxi- 
mation for argon at  densities up to 620 Am. 

In conclusion, the recurrence method used to derive (8), when it is applied to the 
calculation of a gas of hard spheres, is in rather good agreement with experimental data 
in the region of moderate and high densities. It seems possible to extend the calculations 

Table 1. Comparison between the present (CE) approximation and the Van der Waals 
approximation for the hard-sphere gas free energy deduced from experimental results for 
argon. The first row gives the maximum relative deviation (MRD) and the second the mean 
square relative deviation (MSD). The range of density goes from I Am to 620 Am, ie up 
to N V ,  = 2 V ( 1  Am = density of the gas at T =  273.16K and p = 1 atm). 

Alk T MRD MSD 

Van der Waals approximation 8 % 0.9 % 
CE approximation 2.5% 0.149; 
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to higher densities. However this would require taking the overlap of the exclusion 
spheres into account. 

One of the authors (PC) thanks Dr M Ausloos for suggestions improving the manuscript. 

Note added in proof. The referee has kindly pointed out to us that our recurrence 
method had a precursor. When studying the canonical distribution of quantum gases, 
Landsberg (1961) has applied an iteration method to derive identities for QN. He then 
goes on to calculate the mean occupation numbers of bosons and fermions in a given 
quantum state, as well as a set of interesting inequalities. The situation is in fact more 
attractive since the complications arising from sphere overlaps are removed in such a 
case, ie ro tends to zero. 
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